標題: A New Discrete-Time Multi-Constrained K-Winner-Take-All Recurrent Network and Its Application to Prioritized Scheduling
作者: Tien, Po-Lung
交大名義發表
National Chiao Tung University
關鍵字: Energy saving;K-winner take all;parallel computation;prioritized scheduling;quality of service (QoS);recurrent neural network
公開日期: 1-十一月-2017
摘要: In this paper, we propose a novel discrete-time recurrent neural network aiming to resolve a new class of multi-constrained K-winner-take-all (K-WTA) problems. By facilitating specially designed asymmetric neuron weights, the proposed model is capable of operating in a fully parallel manner, thereby allowing true digital implementation. This paper also provides theorems that delineate the theoretical upper bound of the convergence latency, which is merely O(K). Importantly, via simulations, the average convergence time is close to O(1) in most general cases. Moreover, as the multi-constrained K-WTA problem degenerates to a traditional single-constrained problem, the upper bound becomes exactly two parallel iterations, which significantly outperforms the existing K-WTA models. By associating the neurons and neuron weights with routing paths and path priorities, respectively, we then apply the model to a prioritized flow scheduler for the data center networks. Through extensive simulations, we demonstrate that the proposed scheduler converges to the equilibrium state within near-constant time for different scales of networks while achieving maximal throughput, quality-of-service priority differentiation, and minimum energy consumption, subject to the flow contention-free constraints.
URI: http://dx.doi.org/10.1109/TNNLS.2016.2600410
http://hdl.handle.net/11536/143960
ISSN: 2162-237X
DOI: 10.1109/TNNLS.2016.2600410
期刊: IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
Volume: 28
起始頁: 2674
結束頁: 2685
顯示於類別:期刊論文