Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ponce, Augusto C. | en_US |
dc.contributor.author | Spector, Daniel | en_US |
dc.date.accessioned | 2018-08-21T05:52:50Z | - |
dc.date.available | 2018-08-21T05:52:50Z | - |
dc.date.issued | 2017-09-01 | en_US |
dc.identifier.issn | 1631-073X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.crma.2017.09.001 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/143999 | - |
dc.description.abstract | We present the fractional perimeter as a set-function interpolation between the Lebesgue measure and the perimeter in the sense of De Giorgi. Our motivation comes from a new fractional Boxing inequality that relates the fractional perimeter and the Hausdorff content and implies several known inequalities involving the Gagliardo seminorm of the Sobolev spaces W-alpha,W-1 of order 0 < alpha < 1. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A note on the fractional perimeter and interpolation | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.crma.2017.09.001 | en_US |
dc.identifier.journal | COMPTES RENDUS MATHEMATIQUE | en_US |
dc.citation.volume | 355 | en_US |
dc.citation.spage | 960 | en_US |
dc.citation.epage | 965 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000413930000007 | en_US |
Appears in Collections: | Articles |