Full metadata record
DC FieldValueLanguage
dc.contributor.authorPonce, Augusto C.en_US
dc.contributor.authorSpector, Danielen_US
dc.date.accessioned2018-08-21T05:52:50Z-
dc.date.available2018-08-21T05:52:50Z-
dc.date.issued2017-09-01en_US
dc.identifier.issn1631-073Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.crma.2017.09.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/143999-
dc.description.abstractWe present the fractional perimeter as a set-function interpolation between the Lebesgue measure and the perimeter in the sense of De Giorgi. Our motivation comes from a new fractional Boxing inequality that relates the fractional perimeter and the Hausdorff content and implies several known inequalities involving the Gagliardo seminorm of the Sobolev spaces W-alpha,W-1 of order 0 < alpha < 1. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleA note on the fractional perimeter and interpolationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.crma.2017.09.001en_US
dc.identifier.journalCOMPTES RENDUS MATHEMATIQUEen_US
dc.citation.volume355en_US
dc.citation.spage960en_US
dc.citation.epage965en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000413930000007en_US
Appears in Collections:Articles