標題: | Field enhancement of electronic conductance at ferroelectric domain walls |
作者: | Vasudevan, Rama K. Cao, Ye Laanait, Nouamane Ievlev, Anton Li, Linglong Yang, Jan-Chi Chu, Ying-Hao Chen, Long-Qing Kalinin, Sergei V. Maksymovych, Petro 材料科學與工程學系 Department of Materials Science and Engineering |
公開日期: | 6-十一月-2017 |
摘要: | Ferroelectric domain walls have continued to attract widespread attention due to both the novelty of the phenomena observed and the ability to reliably pattern them in nanoscale dimensions. However, the conductivity mechanisms remain in debate, particularly around nominally uncharged walls. Here, we posit a conduction mechanism relying on field-modification effect from polarization re-orientation and the structure of the reverse-domain nucleus. Through conductive atomic force microscopy measurements on an ultra-thin (001) BiFeO3 thin film, in combination with phase-field simulations, we show that the field-induced twisted domain nucleus formed at domain walls results in local-field enhancement around the region of the atomic force microscope tip. In conjunction with slight barrier lowering, these two effects are sufficient to explain the observed emission current distribution. These results suggest that different electronic properties at domain walls are not necessary to observe localized enhancement in domain wall currents. |
URI: | http://dx.doi.org/10.1038/s41467-017-01334-5 http://hdl.handle.net/11536/144032 |
ISSN: | 2041-1723 |
DOI: | 10.1038/s41467-017-01334-5 |
期刊: | NATURE COMMUNICATIONS |
Volume: | 8 |
起始頁: | 0 |
結束頁: | 0 |
顯示於類別: | 期刊論文 |