Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Yi-Chiaen_US
dc.contributor.authorLi, Yimingen_US
dc.contributor.authorSamukawa, Seijien_US
dc.date.accessioned2018-08-21T05:52:52Z-
dc.date.available2018-08-21T05:52:52Z-
dc.date.issued2017-12-01en_US
dc.identifier.issn0957-4484en_US
dc.identifier.urihttp://dx.doi.org/10.1088/1361-6528/aa90f1en_US
dc.identifier.urihttp://hdl.handle.net/11536/144040-
dc.description.abstractIn this work, we numerically simulate the silicon (Si)/silicon carbide (SiC) quantum dot superlattice solar cell (SiC-QDSL) with aluminum oxide (Al2O3-QDSL) passivation. By exploiting the passivation layer of Al2O3, the high photocurrent and the conversion efficiency can be achieved without losing the effective bandgap. Based on the two-photon transition mechanism in an AM1.5 and a one sun illumination, the simulated short-circuit current (J(sc)) of 4.77 mA cm(-2) is very close to the experimentally measured 4.75 mA cm(-2), which is higher than those of conventional SiC-QDSLs. Moreover, the efficiency fluctuation caused by the structural variation is less sensitive by using the passivation layer. A high conversion efficiency of 17.4% is thus estimated by adopting the QD's geometry used in the experiment; and, it can be further boosted by applying a hexagonal QD formation with an inter-dot spacing of 0.3 nm.en_US
dc.language.isoen_USen_US
dc.subjectquantum doten_US
dc.subjectsuperlatticeen_US
dc.subjectsolar cellsen_US
dc.subjectSi/SiCen_US
dc.subjectphysical characteristicen_US
dc.subjectelectrical characteristicen_US
dc.subjectminibandsen_US
dc.titlePhysical and electrical characteristics of Si/SiC quantum dot superlattice solar cells with passivation layer of aluminum oxideen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1361-6528/aa90f1en_US
dc.identifier.journalNANOTECHNOLOGYen_US
dc.citation.volume28en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000414553500001en_US
Appears in Collections:Articles