Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, JCen_US
dc.contributor.authorHsu, PHen_US
dc.contributor.authorWang, CHen_US
dc.contributor.authorLai, HCen_US
dc.date.accessioned2014-12-08T15:20:17Z-
dc.date.available2014-12-08T15:20:17Z-
dc.date.issued2005-06-01en_US
dc.identifier.issn0825-0383en_US
dc.identifier.urihttp://hdl.handle.net/11536/14407-
dc.description.abstractThis study proposes a forecasting method that combines the clustering effect and non-informative diffiuse-prior Bayesian vector autoregression (NDBVAR) model to forecast the productions of technology industries. Two empirical cases are examined to verify the proposed method: the semiconductor industry and computer manufacturing industry in Taiwan. It is found that the NDBVAR model outperforms the other three conventional time series models including the autoregression (AR), vector autoregression (VAR), and Litterman Bayesian VAR (LBVAR) models. Moreover the NDBVAR model also outperforms the forecast reports from leading market information providers over the past several years. The forecasting method proposed is therefore concluded to be a feasible approach for production prediction, especially for technology, industries in volatile environments.en_US
dc.language.isoen_USen_US
dc.subjectindustrial clustersen_US
dc.subjectvector autoregressionen_US
dc.subjectBayesian vector autoregressionen_US
dc.subjectforecastingen_US
dc.subjectTaiwanen_US
dc.titleProduction forecasting of Taiwan's technology industrial cluster: A Bayesian autoregression approachen_US
dc.typeArticleen_US
dc.identifier.journalCANADIAN JOURNAL OF ADMINISTRATIVE SCIENCES-REVUE CANADIENNE DES SCIENCES DE L ADMINISTRATIONen_US
dc.citation.volume22en_US
dc.citation.issue2en_US
dc.citation.spage168en_US
dc.citation.epage183en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000231890500005-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000231890500005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.