Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Yu-Hsuanen_US
dc.contributor.authorHuang, Ding-Chiuanen_US
dc.contributor.authorLou, Jen-Chungen_US
dc.contributor.authorTseng, Tseung-Yuenen_US
dc.date.accessioned2018-08-21T05:52:56Z-
dc.date.available2018-08-21T05:52:56Z-
dc.date.issued2017-12-31en_US
dc.identifier.issn0040-6090en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.tsf.2017.06.066en_US
dc.identifier.urihttp://hdl.handle.net/11536/144114-
dc.description.abstractIn this study, indium tin oxide (ITO), zinc oxide (ZnO), tungsten oxide (WOx), and aluminum nitride (AlN) were employed to fabricate and investigate four transparent resistive random access memory (ReRAMs) structures: ITO/ZnO/ITO (structure 1), ITO/WO3/ZnO/ITO (structure 2), ITO/WOx(x < 3)/WO3/ZnO/ITO (structure 3), and ITO/WOx(x < 3)/WO3/ZnO/AlN/ITO (structure 4). Structure 4 exhibited less variation in low-resistance states, lower operating voltages, and higher endurance compared with other structures. This phenomenon was attributed to the oxygen-deficient WOx layer in structure 4, which acted as an oxygen ion reservoir for efficient resistive changes, and the WO3 layer limited the filament rupture and formation region. Moreover, the high thermal conductivity of the AlN layer alleviated the thermally activated ion movement of the ReRAM and strengthened the high-resistance state. Structure 4 was found to be the optimal structure, with median operating voltages 1.6 V for SET operations and -1.0 V for RESET operations, retention of > 10(4) s at 200 degrees C, and endurance of 10(4) cycles with a resistance ratio of over 20. Structure 4 exhibited extremely high stability in both low- and high-resistance states during cycling. The transmittance of structure 4 was 85.49%, which is suitable for optoelectronic applications.en_US
dc.language.isoen_USen_US
dc.subjectTransparent electronicsen_US
dc.subjectResistive random access memoryen_US
dc.subjectOxygen deficient layeren_US
dc.subjectHeat dissipationen_US
dc.titleEndurance improvement and resistance stabilization of transparent multilayer resistance switching devices with oxygen deficient WOx layer and heat dissipating AlN buffer layeren_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tsf.2017.06.066en_US
dc.identifier.journalTHIN SOLID FILMSen_US
dc.citation.volume644en_US
dc.citation.spage10en_US
dc.citation.epage15en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000416041400003en_US
Appears in Collections:Articles