Full metadata record
DC FieldValueLanguage
dc.contributor.authorChung, Jing-Yangen_US
dc.contributor.authorLiao, Chi-Weien_US
dc.contributor.authorChang, Yi-Weien_US
dc.contributor.authorChang, Bor Kaeen_US
dc.contributor.authorWang, Haoen_US
dc.contributor.authorLi, Jingen_US
dc.contributor.authorWang, Cheng-Yuen_US
dc.date.accessioned2018-08-21T05:53:06Z-
dc.date.available2018-08-21T05:53:06Z-
dc.date.issued2017-12-14en_US
dc.identifier.issn1932-7447en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acs.jpcc.7b10526en_US
dc.identifier.urihttp://hdl.handle.net/11536/144263-
dc.description.abstractHydrogen released from chemical hydride ammonia borane (AB, NH3BH3) can be greatly improved when AB is confined in metal-organic frameworks (MOFs), showing reduced decomposition temperature and suppressed unwanted byproducts. However, it is still debatable whether the mechanism of improved AB dehydrogenation is due to catalysis or nanosize. In this research, selected MOF (IRMOF-1, IRMOF-10, UiO-66, UiO-67, and MIL-53(Al)) were chosen to explore both catalytic effect of the metal clusters and the manipulation of pore size for nanoconfinement by variations in ligand length. When AB particle size was restricted by the controlled micropores of MOFs, we observed that the decomposition temperature was not correlated to the MOF catalytic environment, but inversely proportional to the reciprocal of the particle size. The results correspond well with the derived thermodynamic model for AB decomposition considering surface tension of nanoparticles.en_US
dc.language.isoen_USen_US
dc.titleInfluence of Metal-Organic Framework Porosity on Hydrogen Generation from Nanoconfined Ammonia Boraneen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acs.jpcc.7b10526en_US
dc.identifier.journalJOURNAL OF PHYSICAL CHEMISTRY Cen_US
dc.citation.volume121en_US
dc.citation.spage27369en_US
dc.citation.epage27378en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000418393900015en_US
Appears in Collections:Articles