Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWang, Jenn-Nanen_US
dc.date.accessioned2018-08-21T05:53:07Z-
dc.date.available2018-08-21T05:53:07Z-
dc.date.issued2017-03-01en_US
dc.identifier.issn0266-5611en_US
dc.identifier.urihttp://dx.doi.org/10.1088/1361-6420/aa5475en_US
dc.identifier.urihttp://hdl.handle.net/11536/144298-
dc.description.abstractWe propose an efficient eigensolver for computing densely distributed spectra of the two-dimensional transmission eigenvalue problem (TEP), which is derived from Maxwell's equations with Tellegen media and the transverse magnetic mode. The governing equations, when discretized by the standard piecewise linear finite element method, give rise to a large-scale quadratic eigenvalue problem (QEP). Our numerical simulation shows that half of the positive eigenvalues of the QEP are densely distributed in some interval near the origin. The quadratic Jacobi-Davidson method with a so-called non-equivalence deflation technique is proposed to compute the dense spectrum of the QEP. Extensive numerical simulations show that our proposed method processes the convergence efficiently, even when it needs to compute more than 5000 desired eigenpairs. Numerical results also illustrate that the computed eigenvalue curves can be approximated by nonlinear functions, which can be applied to estimate the denseness of the eigenvalues for the TEP.en_US
dc.language.isoen_USen_US
dc.subjecttwo-dimensional transmission eigenvalue problemen_US
dc.subjectTellegen modelen_US
dc.subjectquadratic Jacobi-Davidson methoden_US
dc.subjectnon-equivalence deflationen_US
dc.titleAn efficient numerical algorithm for computing densely distributed positive interior transmission eigenvaluesen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1361-6420/aa5475en_US
dc.identifier.journalINVERSE PROBLEMSen_US
dc.citation.volume33en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000395747400004en_US
Appears in Collections:Articles