Full metadata record
DC FieldValueLanguage
dc.contributor.authorDu, Lien_US
dc.contributor.authorDu, Yuanen_US
dc.contributor.authorLi, Yileien_US
dc.contributor.authorSu, Junjieen_US
dc.contributor.authorKuan, Yen-Chengen_US
dc.contributor.authorLiu, Chun-Chenen_US
dc.contributor.authorChang, Mau-Chung Franken_US
dc.date.accessioned2018-08-21T05:53:11Z-
dc.date.available2018-08-21T05:53:11Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1549-8328en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCSI.2017.2735490en_US
dc.identifier.urihttp://hdl.handle.net/11536/144369-
dc.description.abstractConvolutional neural network (CNN) offers significant accuracy in image detection. To implement image detection using CNN in the Internet of Things (IoT) devices, a streaming hardware accelerator is proposed. The proposed accelerator optimizes the energy efficiency by avoiding unnecessary data movement. With unique filter decomposition technique, the accelerator can support arbitrary convolution window size. In addition, max-pooling function can be computed in parallel with convolution by using separate pooling unit, thus achieving throughput improvement. A prototype accelerator was implemented in TSMC 65-nm technology with a core size of 5 mm(2). The accelerator can support major CNNs and achieve 152GOPS peak throughput and 434GOPS/W energy efficiency at 350 mW, making it a promising hardware accelerator for intelligent IoT devices.en_US
dc.language.isoen_USen_US
dc.subjectConvolution neural networken_US
dc.subjectdeep learningen_US
dc.subjecthardware acceleratoren_US
dc.subjectIoTen_US
dc.titleA Reconfigurable Streaming Deep Convolutional Neural Network Accelerator for Internet of Thingsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCSI.2017.2735490en_US
dc.identifier.journalIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERSen_US
dc.citation.volume65en_US
dc.citation.spage198en_US
dc.citation.epage208en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department國際半導體學院zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInternational College of Semiconductor Technologyen_US
dc.identifier.wosnumberWOS:000422660500019en_US
Appears in Collections:Articles