完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGoodman, Jesseen_US
dc.contributor.authorSpector, Danielen_US
dc.date.accessioned2018-08-21T05:53:13Z-
dc.date.available2018-08-21T05:53:13Z-
dc.date.issued2018-06-01en_US
dc.identifier.issn1937-1632en_US
dc.identifier.urihttp://dx.doi.org/10.3934/DEDSS.2018027en_US
dc.identifier.urihttp://hdl.handle.net/11536/144401-
dc.description.abstractIn this paper we study some boundary operators of a class of Bessel-type Littlewood-Paley extensions whose prototype is Delta(x)u(x,y) +(1-2s)(y) (partial derivative u)(partial derivative y)(x,y) + (2)(partial derivative y) (partial derivative 2u)(x,y) = 0 for x is an element of R-d,y > 0, u(x,0) = f(x) for x is an element of R-d. In particular, we show that with a logarithmic scaling one can capture the failure of analyticity of these extensions in the limiting cases s = k is an element of N.en_US
dc.language.isoen_USen_US
dc.subjectBoundary operatoren_US
dc.subjectLittlewood-Paley extensionen_US
dc.subjectBessel functionsen_US
dc.subjectfunctional calculusen_US
dc.subjectLaplacianen_US
dc.titleSOME REMARKS ON BOUNDARY OPERATORS OF BESSEL EXTENSIONSen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/DEDSS.2018027en_US
dc.identifier.journalDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES Sen_US
dc.citation.volume11en_US
dc.citation.spage493en_US
dc.citation.epage509en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000423042500009en_US
顯示於類別:期刊論文