完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Goodman, Jesse | en_US |
dc.contributor.author | Spector, Daniel | en_US |
dc.date.accessioned | 2018-08-21T05:53:13Z | - |
dc.date.available | 2018-08-21T05:53:13Z | - |
dc.date.issued | 2018-06-01 | en_US |
dc.identifier.issn | 1937-1632 | en_US |
dc.identifier.uri | http://dx.doi.org/10.3934/DEDSS.2018027 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/144401 | - |
dc.description.abstract | In this paper we study some boundary operators of a class of Bessel-type Littlewood-Paley extensions whose prototype is Delta(x)u(x,y) +(1-2s)(y) (partial derivative u)(partial derivative y)(x,y) + (2)(partial derivative y) (partial derivative 2u)(x,y) = 0 for x is an element of R-d,y > 0, u(x,0) = f(x) for x is an element of R-d. In particular, we show that with a logarithmic scaling one can capture the failure of analyticity of these extensions in the limiting cases s = k is an element of N. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Boundary operator | en_US |
dc.subject | Littlewood-Paley extension | en_US |
dc.subject | Bessel functions | en_US |
dc.subject | functional calculus | en_US |
dc.subject | Laplacian | en_US |
dc.title | SOME REMARKS ON BOUNDARY OPERATORS OF BESSEL EXTENSIONS | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3934/DEDSS.2018027 | en_US |
dc.identifier.journal | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | en_US |
dc.citation.volume | 11 | en_US |
dc.citation.spage | 493 | en_US |
dc.citation.epage | 509 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000423042500009 | en_US |
顯示於類別: | 期刊論文 |