Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Shi-Chunen_US
dc.contributor.authorYang, Mng-Chuanen_US
dc.date.accessioned2018-08-21T05:53:14Z-
dc.date.available2018-08-21T05:53:14Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://dx.doi.org/10.6688/JISE.2018.34.1.12en_US
dc.identifier.urihttp://hdl.handle.net/11536/144421-
dc.description.abstractPolynomial degree is an important measure for studying the computational complexity of Boolean function. A polynomial P is an element of Z(m)[x] is a generalized representation off over Z(m) if for all x, y is an element of{0, 1}(n); f(x)not equal f(y)double right arrow P(x)not equal P(y)(mod m). Denote the minimum degree as deg(m)(ge)(f), and deg(m)(sym,ge) (f) if the minimum is taken from symmetric polynomials. In this paper we prove new lower bounds for the symmetric Boolean functions that depend on n variables. First, let m(1) and m(2) be relatively prime numbers and have s and t distinct prime factors respectively. Then we have m(1)m(2) (deg(m1)(sym,ge)(f))(s) (deg(m2)(sym1,ge)(f))(t)> n. A polynomial Q is an element of Z(m)[x] is a one-sided representation off over Z(m) if for all xe {0, 1}(n); f(x)=0 double left right arrow Q(x) 0(mod m). Denote the minimum degree among these Q as deg(m)(os) (f). Note that Q(x) can be non-symmetric. Then with the same conditions as above, at least one of m(1)m(2) (deg(m1)(sym,ge)(f))(s) (deg(m2)(sym1,ge)(f))(t)> n and m(1)m(2) (deg(m1)(sym,ge)(f))(s) (deg(m2)(sym1,ge)(-f))(t)> n is true.en_US
dc.language.isoen_USen_US
dc.subjectdegree lower bounden_US
dc.subjectpolynomial methoden_US
dc.subjectBoolean function complexityen_US
dc.subjectACC(0)[m] circuitsen_US
dc.subjectmodulo degree complexityen_US
dc.subjectmultivariate polynomialen_US
dc.subjectMobius inversionen_US
dc.subjectbinomial coefficienten_US
dc.titleRepresenting Symmetric Boolean Functions with Polynomial over Composite Modulien_US
dc.typeArticleen_US
dc.identifier.doi10.6688/JISE.2018.34.1.12en_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume34en_US
dc.citation.spage193en_US
dc.citation.epage203en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000423254700012en_US
Appears in Collections:Articles