完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Chlen-Liangen_US
dc.contributor.authorHsai, Wen-Hoaren_US
dc.contributor.authorChang, Tao-Hsingen_US
dc.date.accessioned2018-08-21T05:53:14Z-
dc.date.available2018-08-21T05:53:14Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://dx.doi.org/10.6688/JISE.2018.34.1.17en_US
dc.identifier.urihttp://hdl.handle.net/11536/144422-
dc.description.abstractThis study considers clustering and dimensionality reduction simultaneously to devise an unsupervised clustering algorithm called locality sensitive K-means (LS-K means). The goal is to find a linear transformation to project data points into a lower dimensional space, so that clustering can perform well in the new space. We design a novel objective function for LS-Kmeans to achieve the goal, and further show that the proposed method can be reformulated as a matrix trace minimization with constraints problem. The original optimization problem becomes a generalized eigenvalue problem when relaxing the optimization problem of LS-Kmeans by allowing the indicator entries to take arbitrary values in R. This paper also shows that the continuous solutions for the transformed cluster membership indicator vectors of LS-Kmeans are located in the subspace spanned by the first K-1 eigenvectors. In the experiments, we use two synthetic datasets to show that the proposed method can cluster non-linearly separable data points. Besides, the experimental results of eight real datasets indicate that the proposed algorithm can generally outperform other alternatives.en_US
dc.language.isoen_USen_US
dc.subjectunsupervised learningen_US
dc.subjectclusteringen_US
dc.subjectlocality sensitive clusteringen_US
dc.subjectdimensionality reductionen_US
dc.subjectlinear transformationen_US
dc.titleLocality Sensitive K-means Clusteringen_US
dc.typeArticleen_US
dc.identifier.doi10.6688/JISE.2018.34.1.17en_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume34en_US
dc.citation.spage289en_US
dc.citation.epage305en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000423254700017en_US
顯示於類別:期刊論文