Full metadata record
DC FieldValueLanguage
dc.contributor.authorHe, Guan-Weien_US
dc.contributor.authorWang, Ting-Yuanen_US
dc.contributor.authorChiang, Ann-Shynen_US
dc.contributor.authorChing, Yu-Taien_US
dc.date.accessioned2018-08-21T05:53:15Z-
dc.date.available2018-08-21T05:53:15Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1539-2791en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s12021-017-9342-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/144462-
dc.description.abstractComputing and analyzing the neuronal structure is essential to studying connectome. Two important tasks for such analysis are finding the soma and constructing the neuronal structure. Finding the soma is considered more important because it is required for some neuron tracing algorithms. We describe a robust automatic soma detection method developed based on the machine learning technique. Images of neurons were three-dimensional confocal microscopic images in the FlyCircuit database. The testing data were randomly selected raw images that contained noises and partial neuronal structures. The number of somas in the images was not known in advance. Our method tries to identify all the somas in the images. Experimental results showed that the method is efficient and robust.en_US
dc.language.isoen_USen_US
dc.subjectSoma detectionen_US
dc.subjectMachine learning methoden_US
dc.subjectDrosophilaen_US
dc.titleSoma Detection in 3D Images of Neurons using Machine Learning Techniqueen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12021-017-9342-0en_US
dc.identifier.journalNEUROINFORMATICSen_US
dc.citation.volume16en_US
dc.citation.spage31en_US
dc.citation.epage41en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000424050100004en_US
Appears in Collections:Articles