完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSu, Shang-Chiuanen_US
dc.contributor.authorChen, Yi-Renen_US
dc.contributor.authorTsai, Shi-Chunen_US
dc.contributor.authorLin, Yi-Bingen_US
dc.date.accessioned2018-08-21T05:53:18Z-
dc.date.available2018-08-21T05:53:18Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1939-0114en_US
dc.identifier.urihttp://dx.doi.org/10.1155/2018/4723862en_US
dc.identifier.urihttp://hdl.handle.net/11536/144512-
dc.description.abstractSoftware Defined Network separates the control plane from network equipment and has great advantage in network management as compared with traditional approaches. With this paradigm, the security issues persist to exist and could become even worse because of the flexibility on handling the packets. In this paper we propose an effective framework by integrating SDN and machine learning to detect and categorize P2P network traffics. This work provides experimental evidence showing that our approach can automatically analyze network traffic and flexibly change flow entries in OpenFlow switches through the SDN controller. This can effectively help the network administrators manage related security problems.en_US
dc.language.isoen_USen_US
dc.titleDetecting P2P Botnet in Software Defined Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2018/4723862en_US
dc.identifier.journalSECURITY AND COMMUNICATION NETWORKSen_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000424861300001en_US
顯示於類別:期刊論文