Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Schikorra, Armin | en_US |
dc.contributor.author | Spector, Daniel | en_US |
dc.contributor.author | Van Schaftingen, Jean | en_US |
dc.date.accessioned | 2018-08-21T05:53:20Z | - |
dc.date.available | 2018-08-21T05:53:20Z | - |
dc.date.issued | 2017-01-01 | en_US |
dc.identifier.issn | 0213-2230 | en_US |
dc.identifier.uri | http://dx.doi.org/10.4171/RMI/937 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/144564 | - |
dc.description.abstract | In this paper we establish new L-1-type estimates for the classical Riesz potentials of order alpha is an element of (0, N): parallel to I alpha u parallel to N-L/(N-alpha)(R-N) <= C parallel to Ru parallel to (L1(RN; RN)). This sharpens the result of Stein and Weiss on the mapping properties of Riesz potentials on the real Hardy space H-1 (R-N) and provides a new family of L-1-Sobolev inequalities for the Riesz fractional gradient. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Riesz potentials | en_US |
dc.subject | Riesz transforms | en_US |
dc.subject | Sobolev inequalities | en_US |
dc.subject | fractional gradient | en_US |
dc.title | An L-1-type estimate for Riesz potentials | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.4171/RMI/937 | en_US |
dc.identifier.journal | REVISTA MATEMATICA IBEROAMERICANA | en_US |
dc.citation.volume | 33 | en_US |
dc.citation.spage | 291 | en_US |
dc.citation.epage | 303 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000396487100012 | en_US |
Appears in Collections: | Articles |