Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Jian-Jhongen_US
dc.contributor.authorJian, Dunliangen_US
dc.contributor.authorLin, Yen-Fuen_US
dc.contributor.authorKu, Ming-Mingen_US
dc.contributor.authorJian, Wen-Binen_US
dc.date.accessioned2018-08-21T05:53:20Z-
dc.date.available2018-08-21T05:53:20Z-
dc.date.issued2018-03-01en_US
dc.identifier.issn0921-4526en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.physb.2017.03.041en_US
dc.identifier.urihttp://hdl.handle.net/11536/144570-
dc.description.abstractZnO nanoflakes of 3-5 mu m in lateral size and 15-20 nm in thickness are synthesized. The nanoflakes are used to make back-gated transistor devices. Electron transport in the ZnO nanoflake channel between source and drain electrodes are investigated. In the beginning, we argue and determine that electrons are in a two-dimensional system. We then apply Mott's two-dimensional variable range hopping model to analyze temperature and electric field dependences of resistivity. The disorder parameter, localization length, hopping distance, and hopping energy of the electron system in ZnO nanoflakes are obtained and, additionally, their temperature behaviors and dependences on room-temperature resistivity are presented. On the other hand, the basic transfer characteristics of the channel material are carried out, as well, and the carrier concentration, the mobility, and the Fermi wavelength of two-dimensional ZnO nanoflakes are estimated.en_US
dc.language.isoen_USen_US
dc.subjectZnOen_US
dc.subjectNanoflakeen_US
dc.subjectTwo-dimensional hopping transporten_US
dc.subjectTwo-dimensional semiconductoren_US
dc.subjectVariable range hoppingen_US
dc.titleElectron transport in the two-dimensional channel material - zinc oxide nanoflakeen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.physb.2017.03.041en_US
dc.identifier.journalPHYSICA B-CONDENSED MATTERen_US
dc.citation.volume532en_US
dc.citation.spage135en_US
dc.citation.epage138en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000425845100027en_US
Appears in Collections:Articles