完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Yin-Hsuanen_US
dc.contributor.authorChang, Yu-Kaien_US
dc.contributor.authorChang, Yu-Lunen_US
dc.contributor.authorLin, I-Chenen_US
dc.contributor.authorWang, Yu-Shuenen_US
dc.contributor.authorLin, Wen-Chiehen_US
dc.date.accessioned2018-08-21T05:53:22Z-
dc.date.available2018-08-21T05:53:22Z-
dc.date.issued2018-02-01en_US
dc.identifier.issn0167-7055en_US
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.13261en_US
dc.identifier.urihttp://hdl.handle.net/11536/144601-
dc.description.abstractRealizing unrealistic faces is a complicated task that requires a rich imagination and comprehension of facial structures. When face matching, warping or stitching techniques are applied, existing methods are generally incapable of capturing detailed personal characteristics, are disturbed by block boundary artefacts, or require painting-photo pairs for training. This paper presents a data-driven framework to enhance the realism of sketch and portrait paintings based only on photo samples. It retrieves the optimal patches of adaptable shapes and numbers according to the content of the input portrait and collected photos. These patches are then seamlessly stitched by chromatic gain and offset compensation and multi-level blending. Experiments and user evaluations show that the proposed method is able to generate realistic and novel results for a moderately sized photo collection.en_US
dc.language.isoen_USen_US
dc.subjectfacial modellingen_US
dc.subjectmatting & compositingen_US
dc.titleEnhancing the Realism of Sketch and Painted Portraits With Adaptable Patchesen_US
dc.typeArticleen_US
dc.identifier.doi10.1111/cgf.13261en_US
dc.identifier.journalCOMPUTER GRAPHICS FORUMen_US
dc.citation.volume37en_US
dc.citation.spage214en_US
dc.citation.epage225en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department多媒體工程研究所zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentInstitute of Multimedia Engineeringen_US
dc.identifier.wosnumberWOS:000426151300016en_US
顯示於類別:期刊論文