Full metadata record
DC FieldValueLanguage
dc.contributor.authorFuh, Cheng-Deren_US
dc.contributor.authorTeng, Huei-Wenen_US
dc.contributor.authorWang, Ren-Heren_US
dc.date.accessioned2018-08-21T05:53:24Z-
dc.date.available2018-08-21T05:53:24Z-
dc.date.issued2018-04-01en_US
dc.identifier.issn0927-7099en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10614-017-9654-zen_US
dc.identifier.urihttp://hdl.handle.net/11536/144655-
dc.description.abstractImportance sampling is a powerful variance reduction technique for rare event simulation, and can be applied to evaluate a portfolio's Value-at-Risk (VaR). By adding a jump term in the geometric Brownian motion, the jump diffusion model can be used to describe abnormal changes in asset prices when there is a serious event in the market. In this paper, we propose an importance sampling algorithm to compute the portfolio's VaR under a multi-variate jump diffusion model. To be more precise, an efficient computational procedure is developed for estimating the portfolio loss probability for those assets with jump risks. And the tilting measure can be separated for the diffusion and the jump part under the assumption of independence. The simulation results show that the efficiency of importance sampling improves over the naive Monte Carlo simulation from 9 to 277 times under various situations.en_US
dc.language.isoen_USen_US
dc.subjectImportance samplingen_US
dc.subjectExponential tiltingen_US
dc.subjectModerate deviationen_US
dc.subjectJump diffusionen_US
dc.subjectVaRen_US
dc.titleEfficient Simulation of Value-at-Risk Under a Jump Diffusion Model: A New Method for Moderate Deviation Eventsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10614-017-9654-zen_US
dc.identifier.journalCOMPUTATIONAL ECONOMICSen_US
dc.citation.volume51en_US
dc.citation.spage973en_US
dc.citation.epage990en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000427078800011en_US
Appears in Collections:Articles