Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Jiun-Yuen_US
dc.contributor.authorLee, Yuan-Hsuanen_US
dc.contributor.authorLin, John J. H.en_US
dc.date.accessioned2018-08-21T05:53:25Z-
dc.date.available2018-08-21T05:53:25Z-
dc.date.issued2018-03-13en_US
dc.identifier.issn1664-1078en_US
dc.identifier.urihttp://dx.doi.org/10.3389/fpsyg.2018.00251en_US
dc.identifier.urihttp://hdl.handle.net/11536/144670-
dc.description.abstractTo construct CFA, MCFA, and maximum MCFA with LISREL v.8 and below, we provide iMCFA (integrated Multilevel Confirmatory Analysis) to examine the potential multilevel factorial structure in the complex survey data. Modeling multilevel structure for complex survey data is complicated because building a multilevel model is not an infallible statistical strategy unless the hypothesized model is close to the real data structure. Methodologists have suggested using different modeling techniques to investigate potential multilevel structure of survey data. Using iMCFA, researchers can visually set the between-and within-level factorial structure to fit MCFA, CFA and/or MAX MCFA models for complex survey data. iMCFA can then yield between- and within-level variance-covariance matrices, calculate intraclass correlations, perform the analyses and generate the outputs for respective models. The summary of the analytical outputs from LISREL is gathered and tabulated for further model comparison and interpretation. iMCFA also provides LISREL syntax of different models for researchers' future use. An empirical and a simulated multilevel dataset with complex and simple structures in the within or between level was used to illustrate the usability and the effectiveness of the iMCFA procedure on analyzing complex survey data. The analytic results of iMCFA using Muthen's limited information estimator were compared with those of Mplus using Full Information Maximum Likelihood regarding the effectiveness of different estimation methods.en_US
dc.language.isoen_USen_US
dc.subjectmultilevel structural equation modelingen_US
dc.subjectconfirmatory factor analysisen_US
dc.subjectcomplex survey dataen_US
dc.subjectLisrelen_US
dc.subjectMplusen_US
dc.subjectmaximum modelen_US
dc.titleUsingi MCFA to Perform the CFA, Multi level CFA, and Maximum Model for Analyzing Complex Survey Dataen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fpsyg.2018.00251en_US
dc.identifier.journalFRONTIERS IN PSYCHOLOGYen_US
dc.citation.volume9en_US
dc.contributor.department教育研究所zh_TW
dc.contributor.department師資培育中心zh_TW
dc.contributor.departmentInstitute of Educationen_US
dc.contributor.departmentCenter of Teacher Educationen_US
dc.identifier.wosnumberWOS:000427298400001en_US
Appears in Collections:Articles