Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiang, Alvinen_US
dc.contributor.authorDavid, Estheren_US
dc.contributor.authorLee, Yuh-Jyeen_US
dc.contributor.authorLeshem, Guyen_US
dc.contributor.authorYeh, Yi-Renen_US
dc.date.accessioned2018-08-21T05:53:26Z-
dc.date.available2018-08-21T05:53:26Z-
dc.date.issued2017-05-01en_US
dc.identifier.issn1570-8683en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jal.2016.12.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/144686-
dc.description.abstractAn anomaly, or outlier, is an object exhibiting differences that suggest it belongs to an as-yet undefined class or category. Early detection of anomalies often proves of great importance because they may correspond to events such as fraud, spam, or device malfunctions. By automating the creation of a ranking or list of deviations, we can save time and decrease the cognitive overload of the individuals or groups responsible for responding to such events. Over the years many anomaly and outlier metrics have been developed. In this paper we propose a clustering-based score ensembling method for outlier detection. Using benchmark datasets we evaluate quantitatively the robustness and accuracy of different ensemble strategies. We find that ensembling strategies offer only limited value for increasing overall performance, but provide robustness by negating the influence of severely underperforming models. (C) 2017 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectEnsembleen_US
dc.subjectMachine learningen_US
dc.subjectOutlier algorithm classificationen_US
dc.titleA study on anomaly detection ensemblesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jal.2016.12.002en_US
dc.identifier.journalJOURNAL OF APPLIED LOGICen_US
dc.citation.volume21en_US
dc.citation.spage1en_US
dc.citation.epage13en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000396974700001en_US
Appears in Collections:Articles