Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Heng-Juien_US
dc.contributor.authorWang, Jing-Chingen_US
dc.contributor.authorCho, Deok-Yongen_US
dc.contributor.authorHo, Kang-Tingen_US
dc.contributor.authorLin, Jheng-Cyuanen_US
dc.contributor.authorHuan, Bo-Chaoen_US
dc.contributor.authorFang, Yue-Wenen_US
dc.contributor.authorZhu, Yuan-Minen_US
dc.contributor.authorZhan, Qianen_US
dc.contributor.authorXie, Linen_US
dc.contributor.authorPan, Xiao-Qingen_US
dc.contributor.authorChiu, Ya-Pingen_US
dc.contributor.authorDuan, Chun-Gangen_US
dc.contributor.authorHe, Jr-Hauen_US
dc.contributor.authorChu, Ying-Haoen_US
dc.date.accessioned2018-08-21T05:53:28Z-
dc.date.available2018-08-21T05:53:28Z-
dc.date.issued2018-03-01en_US
dc.identifier.issn2330-4022en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsphotonics.7b01339en_US
dc.identifier.urihttp://hdl.handle.net/11536/144733-
dc.description.abstractThe photoelectric effect in semiconductors is the main mechanism for most modern optoelectronic devices, in which the adequate bandgap plays the key role for acquiring high photoresponse. Among numerous material categories applied in this field, the complex oxides exhibit great possibilities because they present a wide distribution of band gaps for absorbing light with any wavelength. Their physical properties and lattice structures are always strongly coupled and sensitive to light illumination. Moreover, the confinement of dimensionality of the complex oxides in the heterostructures can provide more diversities in designing and modulating the band structures. On the basis of this perspective, we have chosen itinerary ferromagnetic SrRuO3 as the model material, and fabricated it in one-unit-cell thickness in order to open a small band gap for effective utilization of visible light. By inserting this SrRuO3 monolayer at the interface of the well-developed two-dimensional electron gas system (LaAlO3/SrTiO3), the resistance of the monolayer can be further revealed. In addition, a giant enhancement (>300%) of photoresponse under illumination of visible light with power density of 500 mW/cm(2) is also observed. Such can be ascribed to the further modulation of band structure of the SrRuO3 monolayer under the illumination, confirmed by cross-section scanning tunneling microscopy (XSTM). Therefore, this study demonstrates a simple route to design and explore the potential low dimensional oxide materials for future optoelectronic devices.en_US
dc.language.isoen_USen_US
dc.subjectSrRuO3 monolayeren_US
dc.subjectcomplex oxide heterostructuresen_US
dc.subjectphotoresponseen_US
dc.subjectoptoelectronicsen_US
dc.subjectinterface engineeringen_US
dc.titleGiant Photoresponse in Quantized SrRuO3 Monolayer at Oxide Interfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsphotonics.7b01339en_US
dc.identifier.journalACS PHOTONICSen_US
dc.citation.volume5en_US
dc.citation.spage1041en_US
dc.citation.epage1049en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000428356400050en_US
Appears in Collections:Articles