Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Shin-Jyeen_US
dc.contributor.authorChen, Tonglinen_US
dc.contributor.authorYu, Lunen_US
dc.contributor.authorLai, Chin-Huien_US
dc.date.accessioned2018-08-21T05:53:29Z-
dc.date.available2018-08-21T05:53:29Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ACCESS.2018.2796722en_US
dc.identifier.urihttp://hdl.handle.net/11536/144746-
dc.description.abstractConvolutional neural networks (CNNs), which are composed of multiple processing layers to learn the representations of data with multiple abstract levels, are the most successful machine learning models in recent years. However, these models can have millions of parameters and many layers, which are difficult to train, and sometimes several days or weeks are required to tune the parameters. Within this paper, we present the usage of a trained deep convolutional neural network model to extract the features of the images, and then, used the AdaBoost algorithm to assemble the Softmax classifiers into recognizable images. This method resulted in a 3% increase of accuracy of the trained CNN models, and dramatically reduced the retraining time cost, and thus, it has good application prospects.en_US
dc.language.isoen_USen_US
dc.subjectConvolutional neural networken_US
dc.subjectensemble learningen_US
dc.subjectdeep learningen_US
dc.subjectboostingen_US
dc.titleImage Classification Based on the Boost Convolutional Neural Networken_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2018.2796722en_US
dc.identifier.journalIEEE ACCESSen_US
dc.citation.volume6en_US
dc.citation.spage12755en_US
dc.citation.epage12768en_US
dc.contributor.department科技管理研究所zh_TW
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.identifier.wosnumberWOS:000428597000001en_US
Appears in Collections:Articles