完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorLi, Ren-Cangen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2018-08-21T05:53:29Z-
dc.date.available2018-08-21T05:53:29Z-
dc.date.issued2017-05-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2017.01.005en_US
dc.identifier.urihttp://hdl.handle.net/11536/144764-
dc.description.abstractIn this paper, we present an efficient PQR algorithm for solving the linear response eigenvalue problem H-x = lambda(x) , where H is Pi(-)-symmetric with respect to Gamma(0) = diag(I-n,-I-n). Based on newly introduced Gamma-orthogonal transformations, the PQR algorithm preserves the Pi(-)-symmetric structure of H throughout the whole process, and thus guarantees the computed eigenvalues to appear pairwise (lambda, -lambda) as they should. With the help of a newly established implicit Gamma-orthogonality theorem, we incorporate the implicit multi-shift technique to accelerate the convergence of the Gamma QR algorithm. Numerical experiments are given to show the effectiveness of the algorithm.(C) 2017 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPi(+/-)-matrixen_US
dc.subjectGamma-orthogonalityen_US
dc.subjectStructure preservingen_US
dc.subjectPQR algorithmen_US
dc.subjectLinear response eigenvalue problemen_US
dc.titleA symmetric structure-preserving FQR algorithm for linear response eigenvalue problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2017.01.005en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume520en_US
dc.citation.spage191en_US
dc.citation.epage214en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000397073100012en_US
顯示於類別:期刊論文