Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Yen-Jenen_US
dc.contributor.authorFan, Feng-leien_US
dc.contributor.authorWeng, Chih-wenen_US
dc.date.accessioned2018-08-21T05:53:31Z-
dc.date.available2018-08-21T05:53:31Z-
dc.date.issued2018-04-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://dx.doi.org/10.11650/tjm/8145en_US
dc.identifier.urihttp://hdl.handle.net/11536/144791-
dc.description.abstractIn this paper, we study the spectral radius of bipartite graphs. Let G be a bipartite graph with e edges without isolated vertices. It was known that the spectral radius of G is at most the square root of e, and the upper bound is attained if and only if G is a complete bipartite graph. Suppose that G is not a complete bipartite graph and (e - 1, e + 1) is not a pair of twin primes. We describe the maximal spectral radius of G. As a byproduct of our study, we obtain a spectral characterization of a pair (e - 1, e + 1) of integers to be a pair of twin primes.en_US
dc.language.isoen_USen_US
dc.subjectspectral radiusen_US
dc.subjecttwin primesen_US
dc.titleAn Extending Result on Spectral Radius of Bipartite Graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.11650/tjm/8145en_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume22en_US
dc.citation.spage263en_US
dc.citation.epage274en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000429105900001en_US
Appears in Collections:Articles