Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheng, Yen-Jen | en_US |
dc.contributor.author | Fan, Feng-lei | en_US |
dc.contributor.author | Weng, Chih-wen | en_US |
dc.date.accessioned | 2018-08-21T05:53:31Z | - |
dc.date.available | 2018-08-21T05:53:31Z | - |
dc.date.issued | 2018-04-01 | en_US |
dc.identifier.issn | 1027-5487 | en_US |
dc.identifier.uri | http://dx.doi.org/10.11650/tjm/8145 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/144791 | - |
dc.description.abstract | In this paper, we study the spectral radius of bipartite graphs. Let G be a bipartite graph with e edges without isolated vertices. It was known that the spectral radius of G is at most the square root of e, and the upper bound is attained if and only if G is a complete bipartite graph. Suppose that G is not a complete bipartite graph and (e - 1, e + 1) is not a pair of twin primes. We describe the maximal spectral radius of G. As a byproduct of our study, we obtain a spectral characterization of a pair (e - 1, e + 1) of integers to be a pair of twin primes. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | spectral radius | en_US |
dc.subject | twin primes | en_US |
dc.title | An Extending Result on Spectral Radius of Bipartite Graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.11650/tjm/8145 | en_US |
dc.identifier.journal | TAIWANESE JOURNAL OF MATHEMATICS | en_US |
dc.citation.volume | 22 | en_US |
dc.citation.spage | 263 | en_US |
dc.citation.epage | 274 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000429105900001 | en_US |
Appears in Collections: | Articles |