完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Hsi-Kueien_US
dc.contributor.authorLi, Jia-Xingen_US
dc.contributor.authorWang, Hao-Chengen_US
dc.contributor.authorSu, Yu-Weien_US
dc.contributor.authorWu, Kaung-Hsiungen_US
dc.contributor.authorWei, Kung-Hwaen_US
dc.date.accessioned2018-08-21T05:53:31Z-
dc.date.available2018-08-21T05:53:31Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2046-2069en_US
dc.identifier.urihttp://dx.doi.org/10.1039/c8ra01532een_US
dc.identifier.urihttp://hdl.handle.net/11536/144809-
dc.description.abstractIn photovoltaic devices, more effective transfer of dissociated electrons and holes from the active layer to the respective electrodes will result in higher fill factors and short-circuit current densities and, thus, enhanced power conversion efficiencies (PCEs). Planar perovskite photovoltaics feature an active layer that can provide a large exciton diffusion length, reaching several micrometers, but require efficient carrier transport layers for charge extraction. In this study, we employed two nanocomposite carrier transfer layersan electron transport layer (ETL) comprising [6,6]phenyl-C-61-butyric acid methyl ester (PC61BM) doped with the small molecule 4,7-diphenyl-1,10-phenanthroline (Bphen), to enhance the electron mobility, and a hole transfer layer (HTL) comprising poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) doped with molybdenum disulfide (MoS2) nanosheets, to enhance the hole mobility. We used ultraviolet photoelectron spectroscopy to determine the energy levels of these composite ETLs and HTLs; atomic force microscopy and scanning electron microscopy to probe their surface structures; and transmission electron microscopy and synchrotron grazing-incidence small-angle X-ray scattering to decipher the structures of the ETLs. Adding a small amount (less than 1%) of Bphen allowed us to tune the energy levels of the ETL and decrease the size of the PC61BM clusters and, therefore, generate more PC61BM aggregation domains to provide more pathways for electron transport, leading to enhanced PCEs of the resulting perovskite devices. We used quantitative pump-probe data to resolve the carrier dynamics from the perovskite to the ETL and HTL, and observed a smaller possibility of carrier recombination and a shorter injection lifetime in the perovskite solar cell doubly modified with carrier transport layers, resulting in an enhancement of the PCE. The PCE reached 16% for a planar inverted perovskite device featuring an ETL incorporating 0.5 wt% Bphen within PC61BM and 0.1 wt% MoS2 within PEDOT:PSS; this PCE is more than 50% higher than the value of 10.2% for the corresponding control device.en_US
dc.language.isoen_USen_US
dc.titleDual nanocomposite carrier transport layers enhance the efficiency of planar perovskite photovoltaicsen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/c8ra01532een_US
dc.identifier.journalRSC ADVANCESen_US
dc.citation.volume8en_US
dc.citation.spage12526en_US
dc.citation.epage12534en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000429450000004en_US
顯示於類別:期刊論文