Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsia, Chun-Hsiungen_US
dc.contributor.authorShiue, Ming-Chengen_US
dc.date.accessioned2018-08-21T05:53:33Z-
dc.date.available2018-08-21T05:53:33Z-
dc.date.issued2018-05-01en_US
dc.identifier.issn0029-599Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00211-017-0934-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/144839-
dc.description.abstractIn this article, a semi-discretized Euler scheme to solve the three dimensional viscous primitive equations is studied. Based on suitable assumptions on the initial data and forcing terms, the long-time stability of the proposed scheme is proven by showing that the norm (in space variables) of the solutions is bounded at each time step when the time step satisfies certain smallness condition.en_US
dc.language.isoen_USen_US
dc.titleOn the long-time stability of a temporal discretization scheme for the three dimensional viscous primitive equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00211-017-0934-2en_US
dc.identifier.journalNUMERISCHE MATHEMATIKen_US
dc.citation.volume139en_US
dc.citation.spage187en_US
dc.citation.epage245en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000429926500007en_US
Appears in Collections:Articles