Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Jyun-Rong | en_US |
dc.contributor.author | Huang, Wen-Lin | en_US |
dc.contributor.author | Tsai, Ming-Ju | en_US |
dc.contributor.author | Hsu, Kai-Ti | en_US |
dc.contributor.author | Huang, Hui-Ling | en_US |
dc.contributor.author | Ho, Shinn-Ying | en_US |
dc.date.accessioned | 2018-08-21T05:53:34Z | - |
dc.date.available | 2018-08-21T05:53:34Z | - |
dc.date.issued | 2017-03-01 | en_US |
dc.identifier.issn | 1367-4803 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1093/bioinformatics/btw701 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/144875 | - |
dc.description.abstract | Motivation: Numerous ubiquitination sites remain undiscovered because of the limitations of mass spectrometry-based methods. Existing prediction methods use randomly selected non-validated sites as non-ubiquitination sites to train ubiquitination site prediction models. Results: We propose an evolutionary screening algorithm (ESA) to select effective negatives among non-validated sites and an ESA-based prediction method, ESA-UbiSite, to identify human ubiquitination sites. The ESA selects non-validated sites least likely to be ubiquitination sites as training negatives. Moreover, the ESA and ESA-UbiSite use a set of well-selected physicochemical properties together with a support vector machine for accurate prediction. Experimental results show that ESA-UbiSite with effective negatives achieved 0.92 test accuracy and a Matthews's correlation coefficient of 0.48, better than existing prediction methods. The ESA increased ESA-UbiSite's test accuracy from 0.75 to 0.92 and can improve other post-translational modification site prediction methods. | en_US |
dc.language.iso | en_US | en_US |
dc.title | ESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negatives | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1093/bioinformatics/btw701 | en_US |
dc.identifier.journal | BIOINFORMATICS | en_US |
dc.citation.volume | 33 | en_US |
dc.citation.spage | 661 | en_US |
dc.citation.epage | 668 | en_US |
dc.contributor.department | 生物科技學系 | zh_TW |
dc.contributor.department | 生物資訊及系統生物研究所 | zh_TW |
dc.contributor.department | Department of Biological Science and Technology | en_US |
dc.contributor.department | Institude of Bioinformatics and Systems Biology | en_US |
dc.identifier.wosnumber | WOS:000397265300005 | en_US |
Appears in Collections: | Articles |