完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Jyun-Rongen_US
dc.contributor.authorHuang, Wen-Linen_US
dc.contributor.authorTsai, Ming-Juen_US
dc.contributor.authorHsu, Kai-Tien_US
dc.contributor.authorHuang, Hui-Lingen_US
dc.contributor.authorHo, Shinn-Yingen_US
dc.date.accessioned2018-08-21T05:53:34Z-
dc.date.available2018-08-21T05:53:34Z-
dc.date.issued2017-03-01en_US
dc.identifier.issn1367-4803en_US
dc.identifier.urihttp://dx.doi.org/10.1093/bioinformatics/btw701en_US
dc.identifier.urihttp://hdl.handle.net/11536/144875-
dc.description.abstractMotivation: Numerous ubiquitination sites remain undiscovered because of the limitations of mass spectrometry-based methods. Existing prediction methods use randomly selected non-validated sites as non-ubiquitination sites to train ubiquitination site prediction models. Results: We propose an evolutionary screening algorithm (ESA) to select effective negatives among non-validated sites and an ESA-based prediction method, ESA-UbiSite, to identify human ubiquitination sites. The ESA selects non-validated sites least likely to be ubiquitination sites as training negatives. Moreover, the ESA and ESA-UbiSite use a set of well-selected physicochemical properties together with a support vector machine for accurate prediction. Experimental results show that ESA-UbiSite with effective negatives achieved 0.92 test accuracy and a Matthews's correlation coefficient of 0.48, better than existing prediction methods. The ESA increased ESA-UbiSite's test accuracy from 0.75 to 0.92 and can improve other post-translational modification site prediction methods.en_US
dc.language.isoen_USen_US
dc.titleESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negativesen_US
dc.typeArticleen_US
dc.identifier.doi10.1093/bioinformatics/btw701en_US
dc.identifier.journalBIOINFORMATICSen_US
dc.citation.volume33en_US
dc.citation.spage661en_US
dc.citation.epage668en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000397265300005en_US
顯示於類別:期刊論文