完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Hsu, YJ | en_US |
dc.contributor.author | Wang, TH | en_US |
dc.date.accessioned | 2018-08-21T05:53:38Z | - |
dc.date.available | 2018-08-21T05:53:38Z | - |
dc.date.issued | 2001-01-01 | en_US |
dc.identifier.issn | 0002-9939 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1090/S0002-9939-01-06030-0 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/144952 | - |
dc.description.abstract | Let M be a compact immersed surface in the unit sphere S-3 with constant mean curvature H. Denote by phi the linear map from T-p(M) into Tp(M), phi = A - H/2 I, where A is the linear map associated to the second fundamental form and I is the identity map. Let Phi denote the square of the length of phi. We prove that if parallel to Phi parallel to (L2) less than or equal to C, then M is either totally umbilical or an H(r)-torus, where C is a constant depending only on the mean curvature H. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | mean curvature | en_US |
dc.subject | sphere | en_US |
dc.subject | totally umbilical | en_US |
dc.title | A global pinching theorem for surfaces with constant mean curvature in S-3 | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1090/S0002-9939-01-06030-0 | en_US |
dc.identifier.journal | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY | en_US |
dc.citation.volume | 130 | en_US |
dc.citation.spage | 157 | en_US |
dc.citation.epage | 161 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000171005600021 | en_US |
顯示於類別: | 期刊論文 |