完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, YJen_US
dc.contributor.authorWang, THen_US
dc.date.accessioned2018-08-21T05:53:38Z-
dc.date.available2018-08-21T05:53:38Z-
dc.date.issued2001-01-01en_US
dc.identifier.issn0002-9939en_US
dc.identifier.urihttp://dx.doi.org/10.1090/S0002-9939-01-06030-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/144952-
dc.description.abstractLet M be a compact immersed surface in the unit sphere S-3 with constant mean curvature H. Denote by phi the linear map from T-p(M) into Tp(M), phi = A - H/2 I, where A is the linear map associated to the second fundamental form and I is the identity map. Let Phi denote the square of the length of phi. We prove that if parallel to Phi parallel to (L2) less than or equal to C, then M is either totally umbilical or an H(r)-torus, where C is a constant depending only on the mean curvature H.en_US
dc.language.isoen_USen_US
dc.subjectmean curvatureen_US
dc.subjectsphereen_US
dc.subjecttotally umbilicalen_US
dc.titleA global pinching theorem for surfaces with constant mean curvature in S-3en_US
dc.typeArticleen_US
dc.identifier.doi10.1090/S0002-9939-01-06030-0en_US
dc.identifier.journalPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETYen_US
dc.citation.volume130en_US
dc.citation.spage157en_US
dc.citation.epage161en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000171005600021en_US
顯示於類別:期刊論文