完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Chien-Liangen_US
dc.contributor.authorHsaio, Wen-Hoaren_US
dc.contributor.authorXiao, Binen_US
dc.contributor.authorChen, Chun-Yuen_US
dc.contributor.authorWu, Wei-Liangen_US
dc.date.accessioned2018-08-21T05:53:42Z-
dc.date.available2018-08-21T05:53:42Z-
dc.date.issued2017-05-17en_US
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.neucom.2017.01.071en_US
dc.identifier.urihttp://hdl.handle.net/11536/145042-
dc.description.abstractThis work devises a maximum-margin sparse coding algorithm, jointly considering reconstruction loss and hinge loss in the model. The sparse representation along with maximum-margin constraint is analogous to kernel trick and maximum-margin properties of support vector machine (SVM), giving a base for the proposed algorithm to perform well in classification tasks. The key idea behind the proposed method is to use labeled and unlabeled data to learn discriminative representations and model parameters simultaneously, making it easier to classify data in the new space. We propose to use block coordinate descent to learn all the components of the proposed model and give detailed derivation for the update rules of the model variables. Theoretical analysis on the convergence of the proposed MMSC algorithm is provided based on Zangwill's global convergence theorem. Additionally, most previous research studies on dictionary learning suggest to use an overcomplete dictionary to improve classification performance, but it is computationally intensive when the dimension of the input data is huge. We conduct experiments on several real data sets, including Extended YaleB, AR face, and Caltech101 data sets. The experimental results indicate that the proposed algorithm outperforms other comparison algorithms without an over-complete dictionary, providing flexibility to deal with high-dimensional data sets. (C)2017 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectMaximum-marginen_US
dc.subjectSparse codingen_US
dc.subjectBlock coordinate descenten_US
dc.titleMaximum-margin sparse codingen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neucom.2017.01.071en_US
dc.identifier.journalNEUROCOMPUTINGen_US
dc.citation.volume238en_US
dc.citation.spage340en_US
dc.citation.epage350en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000397372100039en_US
顯示於類別:期刊論文