Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Ting-Yuanen_US
dc.contributor.authorChen, Nan-Yowen_US
dc.contributor.authorHe, Guan-Weien_US
dc.contributor.authorWang, Guo-Tzauen_US
dc.contributor.authorShih, Chi-Tinen_US
dc.contributor.authorChiang, Ann-Shynen_US
dc.date.accessioned2018-08-21T05:53:44Z-
dc.date.available2018-08-21T05:53:44Z-
dc.date.issued2018-04-01en_US
dc.identifier.issn1539-2791en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s12021-018-9363-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/145080-
dc.description.abstractEffective 3D visualization is essential for connectomics analysis, where the number of neural images easily reaches over tens of thousands. A formidable challenge is to simultaneously visualize a large number of distinguishable single-neuron images, with reasonable processing time and memory for file management and 3D rendering. In the present study, we proposed an algorithm named "Kaleido" that can visualize up to at least ten thousand single neurons from the Drosophila brain using only a fraction of the memory traditionally required, without increasing computing time. Adding more brain neurons increases memory only nominally. Importantly, Kaleido maximizes color contrast between neighboring neurons so that individual neurons can be easily distinguished. Colors can also be assigned to neurons based on biological relevance, such as gene expression, neurotransmitters, and/or development history. For cross-lab examination, the identity of every neuron is retrievable from the displayed image. To demonstrate the effectiveness and tractability of the method, we applied Kaleido to visualize the 10,000 Drosophila brain neurons obtained from the FlyCircuit database Thus, Kaleido visualization requires only sensible computer memory for manual examination of big connectomics data.en_US
dc.language.isoen_USen_US
dc.subjectNeuroimagingen_US
dc.subjectConnectomeen_US
dc.subjectBrainen_US
dc.subjectNeuron visualizationen_US
dc.titleKaleido: Visualizing Big Brain Data with Automatic Color Assignment for Single-Neuron Imagesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12021-018-9363-3en_US
dc.identifier.journalNEUROINFORMATICSen_US
dc.citation.volume16en_US
dc.citation.spage207en_US
dc.citation.epage215en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000434178500007en_US
Appears in Collections:Articles