Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Fang-Juen_US
dc.contributor.authorChuang, Jen-Huien_US
dc.date.accessioned2018-08-21T05:53:44Z-
dc.date.available2018-08-21T05:53:44Z-
dc.date.issued2018-06-01en_US
dc.identifier.issn1380-7501en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11042-017-5031-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/145093-
dc.description.abstractAlpha matting refers to the problem of softly extracting the foreground from a given image. Previous matting approaches often focused on using na < ve color sampling methods to estimate foreground and background colors for unknown pixels. Existing sampling-based matting methods often collect samples only near the unknown pixels, which may yield poor results if the true foreground and background samples are not found. In this paper, we present novel approach to extract foreground elements from an image through color and opacity (i.e., alpha) estimations, which consider available samples in a search window of variable size for each unknown pixel. Our proposed sampling method is robust in that similar sampling results can be generated for input trimaps of different unknown regions. Further, after the initial estimation of the alpha matte, a fully connected conditional random field (CRF) is used to correct the predicted matte at the pixel level. Our experiments show that visually plausible alpha mattes can indeed be produced.en_US
dc.language.isoen_USen_US
dc.subjectImage mattingen_US
dc.subjectAlpha mattingen_US
dc.subjectFully connected CRFsen_US
dc.titleAlpha matting using robust color sampling and fully connected conditional random fieldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11042-017-5031-0en_US
dc.identifier.journalMULTIMEDIA TOOLS AND APPLICATIONSen_US
dc.citation.volume77en_US
dc.citation.spage14327en_US
dc.citation.epage14342en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000434382900054en_US
Appears in Collections:Articles