Full metadata record
DC FieldValueLanguage
dc.contributor.authorKe, Bo-Shiangen_US
dc.contributor.authorChiang, An Jenen_US
dc.contributor.authorChang, Yuan-chin Ivanen_US
dc.date.accessioned2018-08-21T05:53:45Z-
dc.date.available2018-08-21T05:53:45Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1054-3406en_US
dc.identifier.urihttp://dx.doi.org/10.1080/10543406.2017.1377728en_US
dc.identifier.urihttp://hdl.handle.net/11536/145105-
dc.description.abstractClassification measures play essential roles in the assessment and construction of classifiers. Hence, determining how to prevent these measures from being affected by individual observations has become an important problem. In this paper, we propose several indexes based on the influence function and the concept of local influence to identify influential observations that affect the estimate of the area under the receiver operating characteristic curve (AUC), an important and commonly used measure. Cumulative lift charts are also used to equipoise the disagreements among the proposed indexes. Both the AUC indexes and the graphical tools only rely on the classification scores, and both are applicable to classifiers that can produce real-valued classification scores. A real data set is used for illustration.en_US
dc.language.isoen_USen_US
dc.subjectAUCen_US
dc.subjectcumulative lift charten_US
dc.subjectinfluence functionen_US
dc.subjectlocal influenceen_US
dc.subjectpartial AUCen_US
dc.titleInfluence Analysis for the Area Under the Receiver Operating Characteristic Curveen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/10543406.2017.1377728en_US
dc.identifier.journalJOURNAL OF BIOPHARMACEUTICAL STATISTICSen_US
dc.citation.volume28en_US
dc.citation.spage722en_US
dc.citation.epage734en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000434668800009en_US
Appears in Collections:Articles