完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGuo, Zhen-Chenen_US
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorZhou, Ying-Yingen_US
dc.date.accessioned2018-08-21T05:53:46Z-
dc.date.available2018-08-21T05:53:46Z-
dc.date.issued2018-10-15en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cam.2018.03.010en_US
dc.identifier.urihttp://hdl.handle.net/11536/145123-
dc.description.abstractTo solve the Bethe-Salpeter eigenvalue problem with distinct sizes, two efficient methods, called Gamma QR algorithm and Gamma-Lanczos algorithm, are proposed in this paper. Both algorithms preserve the special structure of the initial matrix. H = [(-(B) over bar) (A) (-(A) over bar) (B)], resulting the computed eigenvalues and the associated eigenvectors still hold the properties similar to those of dr. Theorems are given to demonstrate the validity of the proposed two algorithms in theory. Numerical results are presented to illustrate the superiorities of our methods. (C) 2018 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectBethe-Salpeter eigenvalue problemen_US
dc.subjectGamma-unitarityen_US
dc.subjectGamma QR algorithmen_US
dc.subjectGamma-Lanczos algorithmen_US
dc.titleStructure-preserving Gamma QR and Gamma-Lanczos algorithms for Bethe-Salpeter eigenvalue problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cam.2018.03.010en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICSen_US
dc.citation.volume341en_US
dc.citation.spage12en_US
dc.citation.epage30en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000435044900002en_US
顯示於類別:期刊論文