完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLangner, Johannaen_US
dc.contributor.authorWitek, Henryk A.en_US
dc.date.accessioned2018-08-21T05:53:46Z-
dc.date.available2018-08-21T05:53:46Z-
dc.date.issued2018-07-10en_US
dc.identifier.issn0166-218Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.dam.2018.02.019en_US
dc.identifier.urihttp://hdl.handle.net/11536/145124-
dc.description.abstractThis paper offers a formal explanation of a rather puzzling and surprising equivalence between the Clar covering polynomials of single zigzag chains and the tiling polynomials of 2 x n rectangles for tilings using 1 x 2, 2 x 1 and 2 x 2 tiles. It is demonstrated that the set of Clar covers of single zigzag chains N(n - 1) is isomorphic to the set of filings of a 2 x n rectangle. In particular, this isomorphism maps Clar covers of N(n - 1) with k aromatic sextets to tilings of a 2 x n rectangle using k square 2 x 2 tiles. The proof of this fact is an application of the recently introduced interface theory of Clar covers. The existence of a similar relationship between the Clar covers of more general benzenoid structures and more general tilings of rectangles remains an interesting open problem in chemical graph theory. (C) 2018 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectKekule structureen_US
dc.subjectClar structureen_US
dc.subjectPerfect matchingen_US
dc.subjectZhang-Zhang polynomialen_US
dc.subjectInterfaceen_US
dc.subjectTilingen_US
dc.titleEquivalence between Clar covering polynomials of single zigzag chains and tiling polynomials of 2 x n rectanglesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dam.2018.02.019en_US
dc.identifier.journalDISCRETE APPLIED MATHEMATICSen_US
dc.citation.volume243en_US
dc.citation.spage297en_US
dc.citation.epage303en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000435046600027en_US
顯示於類別:期刊論文