Full metadata record
DC FieldValueLanguage
dc.contributor.authorShiue, Ming-Chengen_US
dc.contributor.authorOng, Kian Chuanen_US
dc.contributor.authorLai, Ming-Chihen_US
dc.date.accessioned2018-08-21T05:53:48Z-
dc.date.available2018-08-21T05:53:48Z-
dc.date.issued2018-08-01en_US
dc.identifier.issn0885-7474en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10915-018-0660-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/145183-
dc.description.abstractIn this paper, we extend the MAC scheme for Stokes problem to the Stokes/Darcy coupling problem. The interface conditions between two separate regions are discretized and well-incorporated into the MAC grid setting. We first perform the stability analysis of the scheme for the velocity in both Stokes and Darcy regions and establish the stability for the pressure in both regions by considering an analogue of discrete divergence problem. Following the similar analysis on stability, we perform the error estimates for the velocity and the pressure in both regions. The theoretical results show the first-order convergence of the scheme in discrete L-2 norms for both velocity and the pressure in both regions. Moreover, in fluid region, the first-order convergence for the x-derivative of velocity component u and the y-derivative of velocity component v is also obtained in discrete L-2 norms. However, numerical tests show one order better for the velocity in Stokes region and the pressure in Darcy region.en_US
dc.language.isoen_USen_US
dc.subjectStokes-Darcy flowen_US
dc.subjectMAC schemeen_US
dc.subjectStabilityen_US
dc.subjectConvergenceen_US
dc.subjectFinite difference methoden_US
dc.subjectStaggered gridsen_US
dc.titleConvergence of the MAC Scheme for the Stokes/Darcy Coupling Problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10915-018-0660-7en_US
dc.identifier.journalJOURNAL OF SCIENTIFIC COMPUTINGen_US
dc.citation.volume76en_US
dc.citation.spage1216en_US
dc.citation.epage1251en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000436253800022en_US
Appears in Collections:Articles