完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorLo, Yuan-Hsunen_US
dc.contributor.authorPerry, K. E.en_US
dc.contributor.authorRodger, C. A.en_US
dc.date.accessioned2018-08-21T05:53:52Z-
dc.date.available2018-08-21T05:53:52Z-
dc.date.issued2018-08-01en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.disc.2018.05.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/145260-
dc.description.abstractA spanning tree of a properly edge-colored complete graph, K, is rainbow provided that each of its edges receives a distinct color. In 1996, Brualdi and Hollingsworth conjectured that if K-2m is properly (2m 1)-edge-colored, then the edges of K-2m,, can be partitioned into m rainbow spanning trees except when m = 2. By means of an explicit, constructive approach, in this paper we construct [root 6m+9/3] mutually edge-disjoint rainbow spanning trees for any positive value of m. Not only are the rainbow trees produced, but also some structure of each rainbow spanning tree is determined in the process. This improves upon best constructive result to date in the literature which produces exactly three rainbow trees. (C) 2018 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectEdge-coloringen_US
dc.subjectComplete graphen_US
dc.subjectRainbow spanning treeen_US
dc.titleOn the number of rainbow spanning trees in edge-colored complete graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2018.05.008en_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume341en_US
dc.citation.spage2343en_US
dc.citation.epage2352en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000438662700021en_US
顯示於類別:期刊論文