完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChiu, Yi-Hsuanen_US
dc.contributor.authorLai, Ting-Hsuanen_US
dc.contributor.authorChen, Chun-Yien_US
dc.contributor.authorHsieh, Ping-Yenen_US
dc.contributor.authorOzasa, Kazunarien_US
dc.contributor.authorNiinomi, Mitsuoen_US
dc.contributor.authorOkada, Kiyoshien_US
dc.contributor.authorChang, Tso-Fu Marken_US
dc.contributor.authorMatsushita, Nobuhiroen_US
dc.contributor.authorSone, Masatoen_US
dc.contributor.authorHsu, Yung-Jungen_US
dc.date.accessioned2018-08-21T05:53:52Z-
dc.date.available2018-08-21T05:53:52Z-
dc.date.issued2018-07-11en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.8b00727en_US
dc.identifier.urihttp://hdl.handle.net/11536/145271-
dc.description.abstractPoor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO2 photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO2, with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting. The charge transfer dynamics for the electrodes was investigated using time-resolved photoluminescence, electrochemical impedance spectroscopy, and the decay of open-circuit voltage analysis. Data reveal that the superior photoactivity of TNTZO over pristine TiO2 originated from the introduction of Nd, Ta, and Zr elements, which enhanced the amount of accessible charge carriers, modified the electronic structure, and improved the hole injection kinetics for expediting water splitting. By modulating the water content of the electrolyte employed in the anodization process, the wall thickness of the grown TNTZO nanotubes can be reduced to a size smaller than that of the depletion layer thickness, realizing a fully depleted state for charge carriers to further advance the PEC performance. Hydrogen evolution tests demonstrate the practical efficacy of TNTZO for realizing solar hydrogen production. Furthermore, with the composition complexity and fully depleted band structure, the present TNTZO nanotube arrays may offer a feasible and universal platform for the loading of other semiconductors to construct a sophisticated heterostructure photoelectrode paradigm, in which the photoexcited charge carriers can be entirely utilized for efficient solar-to-fuel conversion.en_US
dc.language.isoen_USen_US
dc.subjectTi-Nb-Ta-Zr-Oen_US
dc.subjectnanotube arraysen_US
dc.subjectsolar water splittingen_US
dc.subjectfully depleteden_US
dc.subjectinterfacial charge dynamicsen_US
dc.titleFully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Productionen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsami.8b00727en_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume10en_US
dc.citation.spage22997en_US
dc.citation.epage23008en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000439007700014en_US
顯示於類別:期刊論文