完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Wen-Tingen_US
dc.contributor.authorHuang, Hsin-Chengen_US
dc.date.accessioned2018-08-21T05:53:53Z-
dc.date.available2018-08-21T05:53:53Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn1061-8600en_US
dc.identifier.urihttp://dx.doi.org/10.1080/10618600.2016.1157483en_US
dc.identifier.urihttp://hdl.handle.net/11536/145297-
dc.description.abstractIn many atmospheric and earth sciences, it is of interest to identify dominant spatial patterns of variation based on data observed at p locations and n time points with the possibility that p > n. While principal component analysis (PCA) is commonly applied to find the dominant patterns, the eigenimages produced from PCA may exhibit patterns that are too noisy to be physically meaningful when p is large relative to n. To obtain more precise estimates of eigenimages, we propose a regularization approach incorporating smoothness and sparseness of eigenimages, while accounting for their orthogonality. Our method allows data taken at irregularly spaced or sparse locations. In addition, the resulting optimization problem can be solved using the alternating direction method of multipliers, which is easy to implement, and applicable to a large spatial dataset. Furthermore, the estimated eigenfunctions provide a natural basis for representing the underlying spatial process in a spatial random-effects model, from which spatial covariance function estimation and spatial prediction can be efficiently performed using a regularized fixed-rank kriging method. Finally, the effectiveness of the proposed method is demonstrated by several numerical examples.en_US
dc.language.isoen_USen_US
dc.subjectAlternating direction method of multipliersen_US
dc.subjectEmpirical orthogonal functionsen_US
dc.subjectFixed rank krigingen_US
dc.subjectLasso Nonstationary spatialen_US
dc.subjectcovariance estimationen_US
dc.subjectOrthogonal constrainten_US
dc.subjectSmoothing splinesen_US
dc.titleRegularized Principal Component Analysis for Spatial Dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/10618600.2016.1157483en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICSen_US
dc.citation.volume26en_US
dc.citation.spage14en_US
dc.citation.epage25en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000398004100002en_US
顯示於類別:期刊論文