Full metadata record
DC FieldValueLanguage
dc.contributor.authorSyu, Jia-Haoen_US
dc.contributor.authorWang, Sheng-Jyhen_US
dc.contributor.authorWang, Li-Chunen_US
dc.date.accessioned2018-08-21T05:53:57Z-
dc.date.available2018-08-21T05:53:57Z-
dc.date.issued2017-05-01en_US
dc.identifier.issn1057-7149en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TIP.2017.2651395en_US
dc.identifier.urihttp://hdl.handle.net/11536/145376-
dc.description.abstractIn this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.en_US
dc.language.isoen_USen_US
dc.subjectAffinity matrixen_US
dc.subjectcontraction processen_US
dc.subjecthierarchical image segmentationen_US
dc.titleHierarchical Image Segmentation Based on Iterative Contraction and Mergingen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TIP.2017.2651395en_US
dc.identifier.journalIEEE TRANSACTIONS ON IMAGE PROCESSINGen_US
dc.citation.volume26en_US
dc.citation.spage2246en_US
dc.citation.epage2260en_US
dc.contributor.department電機學院zh_TW
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentCollege of Electrical and Computer Engineeringen_US
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000399396400013en_US
Appears in Collections:Articles