Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Yi-Hsuanen_US
dc.contributor.authorChen, Hung-Chiaen_US
dc.contributor.authorChen, Lin-Anen_US
dc.contributor.authorChen, Dung-Tsaen_US
dc.contributor.authorHung, Hui-Nienen_US
dc.date.accessioned2018-08-21T05:54:02Z-
dc.date.available2018-08-21T05:54:02Z-
dc.date.issued2017-08-01en_US
dc.identifier.issn0378-3758en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jspi.2017.02.012en_US
dc.identifier.urihttp://hdl.handle.net/11536/145500-
dc.description.abstractDiscovering differential genes through the detection of outliers in samples from disease group subjects is a new and important approach for gene expression analysis. Extending the outlier mean of Chen et al. (2010a), we develop the asymptotic distributions of the outlier least squares estimator (LSE) and the outlier proportion for the linear regression model. An optimal property of the best linear outlier mean acting as an outlier estimator version of the Gauss Markov theorem for the outlier LSE is presented. Power comparisons demonstrate that tests based on outlier estimators are competitive in detecting a shift of the parent tail distribution. An analysis of DNA microarray data from samples of pancreatic breast tumors supports the use of outlier-based methods. (C) 2017 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectGene expression analysisen_US
dc.subjectLinear outlier meanen_US
dc.subjectLinear regressionen_US
dc.subjectOutlier meanen_US
dc.subjectOutlier least squares estimatoren_US
dc.titleStatistical inferences based on outliers for gene expression analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jspi.2017.02.012en_US
dc.identifier.journalJOURNAL OF STATISTICAL PLANNING AND INFERENCEen_US
dc.citation.volume187en_US
dc.citation.spage130en_US
dc.citation.epage142en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000401207200011en_US
Appears in Collections:Articles