Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Jerry Chun-Weien_US
dc.contributor.authorGan, Wenshengen_US
dc.contributor.authorFournier-Viger, Philippeen_US
dc.contributor.authorHong, Tzung-Peien_US
dc.contributor.authorTseng, Vincent S.en_US
dc.date.accessioned2018-08-21T05:54:03Z-
dc.date.available2018-08-21T05:54:03Z-
dc.date.issued2017-06-01en_US
dc.identifier.issn1432-7643en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00500-016-2159-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/145533-
dc.description.abstractData mining consists of deriving implicit, potentially meaningful and useful knowledge from databases such as information about the most profitable items. High-utility itemset mining (HUIM) has thus emerged as an important research topic in data mining. But most HUIM algorithms can only handle precise data, although big data collected in real-life applications using experimental measurements or noisy sensors is often uncertain. In this paper, an efficient algorithm, named Mining Uncertain High-Utility Itemsets (MUHUI), is proposed to efficiently discover potential high-utility itemsets (PHUIs) in uncertain data. Based on the probability-utility-list (PU-list) structure, the MUHUI algorithm directly mines PHUIs without generating candidates, and can avoid constructing PU-lists for numerous unpromising itemsets by applying several efficient pruning strategies, which greatly improve its performance. Extensive experiments conducted on both real-life and synthetic datasets show that the proposed algorithm significantly outperforms the state-of-the-art PHUI-List algorithm in terms of efficiency and scalability, and that the proposed MUHUI algorithm scales well when mining PHUIs in large-scale uncertain datasets.en_US
dc.language.isoen_USen_US
dc.subjectLarge-scale dataseten_US
dc.subjectData miningen_US
dc.subjectUncertaintyen_US
dc.subjectHigh-utility itemseten_US
dc.subjectPruning strategiesen_US
dc.titleEfficiently mining uncertain high-utility itemsetsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00500-016-2159-1en_US
dc.identifier.journalSOFT COMPUTINGen_US
dc.citation.volume21en_US
dc.citation.spage2801en_US
dc.citation.epage2820en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000401696600002en_US
Appears in Collections:Articles