完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, Yu-Ting | en_US |
dc.contributor.author | Chen, Yu-Tzu | en_US |
dc.contributor.author | Sheu, Yuan-Chung | en_US |
dc.date.accessioned | 2018-08-21T05:54:04Z | - |
dc.date.available | 2018-08-21T05:54:04Z | - |
dc.date.issued | 2017-08-01 | en_US |
dc.identifier.issn | 0167-7152 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.spl.2017.03.018 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/145542 | - |
dc.description.abstract | We study the first exit from a general open set for a one-dimensional Levy process, where the Levy measure is proportional to a two-sided matrix-exponential distribution. Under appropriate conditions on the Levy measure, we obtain an explicit solution for the joint distribution of the first-exit time and the position of the Levy process upon first exit, in terms of the zeros and poles of the corresponding Laplace exponent. The present result complements several earlier works on the use of exit sets for Levy processes with algebraically similar Laplace exponents, where exits from open intervals are the main focus. Published by Elsevier B.V. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | First exit problems | en_US |
dc.subject | Levy processes | en_US |
dc.subject | Matrix-exponential distributions | en_US |
dc.subject | Jump diffusions | en_US |
dc.title | First exit from an open set for a matrix-exponential Levy process | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.spl.2017.03.018 | en_US |
dc.identifier.journal | STATISTICS & PROBABILITY LETTERS | en_US |
dc.citation.volume | 127 | en_US |
dc.citation.spage | 104 | en_US |
dc.citation.epage | 110 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000401882800013 | en_US |
顯示於類別: | 期刊論文 |