Title: Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect
Authors: Ting, Chao-Cheng
Chao, Chih-Hsuan
Tsai, Cheng Yu
Cheng, I-Kai
Pan, Fu-Ming
材料科學與工程學系
Department of Materials Science and Engineering
Keywords: Pt nanoparticle;ITO;Methanol oxidation reaction;CO tolerance;Bifunctional mechanism
Issue Date: 15-Sep-2017
Abstract: We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies. (C) 2017 Elsevier B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/j.apsusc.2017.04.156
http://hdl.handle.net/11536/145577
ISSN: 0169-4332
DOI: 10.1016/j.apsusc.2017.04.156
Journal: APPLIED SURFACE SCIENCE
Volume: 416
Begin Page: 365
End Page: 370
Appears in Collections:Articles