完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTeo, Tee-Annen_US
dc.contributor.authorHuang, Chun-Hsuanen_US
dc.date.accessioned2018-08-21T05:54:07Z-
dc.date.available2018-08-21T05:54:07Z-
dc.date.issued2016-08-01en_US
dc.identifier.issn1017-0839en_US
dc.identifier.urihttp://dx.doi.org/10.3319/TAO.2016.01.29.01(ISRS)en_US
dc.identifier.urihttp://hdl.handle.net/11536/145606-
dc.description.abstractBoth land cover spectral information and 3D surface information can be obtained efficiently via remote sensing technologies. Spectral images provide spectral features whereas lidar point clouds contain 3D spatial features. Therefore, the multi sensor data can be integrated to obtain useful information for different applications. This study integrates lidar with different spectral features for land cover classification. Because different spectral images have different characteristics, this study used hyperspectral images, 4- and 8-band WorldView-2 multispectral images, to distinguish different land covers. The major works include features selection, object-based classification, and evaluation. In features selection appropriate features were selected according to the land cover characteristics. Object-based classification was implemented using image segmentation and supervised classification. Finally, different combinations were evaluated using reference data to provide comprehensive analyses. We use ITRES CASI-1500 airborne hyperspectral images, WorldView-2 multispectral images and Optech ALTM Pegasus in this study. The experiment compared the results with and without data fusion. The importance of different spectral features is also discussed. In summary, different land covers with similar spectral features can be identified using lidar spatial features. Spectral image integration with lidar data may improve land cover classification accuracy.en_US
dc.language.isoen_USen_US
dc.subjectLidaren_US
dc.subjectHyperspectral imageen_US
dc.subjectWorldView-2en_US
dc.subjectObject-based classificationen_US
dc.titleObject-Based Land Cover Classification Using Airborne Lidar and Different Spectral Imagesen_US
dc.typeArticleen_US
dc.identifier.doi10.3319/TAO.2016.01.29.01(ISRS)en_US
dc.identifier.journalTERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCESen_US
dc.citation.volume27en_US
dc.citation.spage491en_US
dc.citation.epage504en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000384157500006en_US
顯示於類別:期刊論文