Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Henghsiuen_US
dc.contributor.authorTsay, Ruey S.en_US
dc.contributor.authorLin, Edward M. H.en_US
dc.contributor.authorCheng, Ching-Weien_US
dc.date.accessioned2018-08-21T05:54:13Z-
dc.date.available2018-08-21T05:54:13Z-
dc.date.issued2016-10-01en_US
dc.identifier.issn1017-0405en_US
dc.identifier.urihttp://dx.doi.org/10.5705/ss.2013.332ten_US
dc.identifier.urihttp://hdl.handle.net/11536/145672-
dc.description.abstractThis paper focuses on factor analysis of multivariate time series. We propose statistical methods that enable analysts to leverage their prior knowledge or substantive information to sharpen the estimation of common factors. Specifically, we consider a doubly constrained factor model that enables analysts to specify both row and column constraints of the data matrix to improve the estimation of common factors. The row constraints may represent classifications of individual subjects whereas the column constraints may show the categories of variables. We derive both the maximum likelihood and least squares estimates of the proposed doubly constrained factor model and use simulations to study the performance of the analysis in finite samples. The Akaike information criterion is used for model selection. Monthly U.S. housing start data from nine geographical divisions are used to demonstrate the application of the proposed model.en_US
dc.language.isoen_USen_US
dc.subjectAkaike information criterionen_US
dc.subjectconstrained factor modelen_US
dc.subjecteigenvaluesen_US
dc.subjectfactor modelen_US
dc.subjecthousing startsen_US
dc.subjectprincipal component analysisen_US
dc.subjectseasonalityen_US
dc.titleDOUBLY CONSTRAINED FACTOR MODELS WITH APPLICATIONSen_US
dc.typeArticleen_US
dc.identifier.doi10.5705/ss.2013.332ten_US
dc.identifier.journalSTATISTICA SINICAen_US
dc.citation.volume26en_US
dc.citation.spage1453en_US
dc.citation.epage1478en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000387199200007en_US
Appears in Collections:Articles