Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, SSen_US
dc.contributor.authorShih, CWen_US
dc.date.accessioned2018-08-21T05:54:14Z-
dc.date.available2018-08-21T05:54:14Z-
dc.date.issued2003-04-01en_US
dc.identifier.issn1078-0947en_US
dc.identifier.urihttp://hdl.handle.net/11536/145694-
dc.description.abstractWe are interested in the asymptotic behaviors of a discrete-time neural network. This network admits transiently chaotic behaviors which provide global searching ability in solving combinatorial optimization problems. As the system evolves, the variables corresponding to temperature in the annealing process decrease, and the chaotic behaviors vanish. We shall find sufficient conditions under which evolutions for the system converge to a fixed point of the system. Attracting sets and uniqueness of fixed point for the system are also addressed. Moreover, we extend the theory to the neural networks with cycle-symmetric coupling weights and other output functions. An application of this annealing process in solving travelling salesman problems is illustrated.en_US
dc.language.isoen_USen_US
dc.subjectneural networken_US
dc.subjectLyapunov functionen_US
dc.subjectconvergence of dynamicsen_US
dc.titleAsymptotic behaviors in a transiently chaotic neural networken_US
dc.typeArticleen_US
dc.identifier.journalDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMSen_US
dc.citation.volume10en_US
dc.citation.spage805en_US
dc.citation.epage826en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000187071800014en_US
Appears in Collections:Articles