Full metadata record
DC FieldValueLanguage
dc.contributor.authorHan, Xiaosenen_US
dc.contributor.authorHuang, Hsin-Yuanen_US
dc.contributor.authorLin, Chang-Shouen_US
dc.date.accessioned2018-08-21T05:54:17Z-
dc.date.available2018-08-21T05:54:17Z-
dc.date.issued2017-08-15en_US
dc.identifier.issn0022-1236en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jfa.2017.04.018en_US
dc.identifier.urihttp://hdl.handle.net/11536/145764-
dc.description.abstractWe establish the existence of bubbling solutions for the following skew-symmetric Chern Simons system Delta u(1) + 1/epsilon(2) e(u2) (1 - e(u1)) = 4 pi Sigma N-1 i=1 delta p(1/i) { Delta u(2) + 1/epsilon(2) e(u1) (1 - e(u2)) = 4 pi Sigma N-2 i=1 delta p(2/i) over a parallelogram Omega with doubly periodic boundary condition, where epsilon > 0 is a coupling parameter, and delta(p) denotes the Dirac measure concentrated at p. We obtain that if (N-1 - 1)(N-2 - 1) > 1, there exists an epsilon(o) > 0 such that, for any epsilon is an element of(0, epsilon(o)), the above system admits a solution (u(1),(epsilon), u(2),(epsilon)) satisfying u1,(epsilon) and u(2),(epsilon) blow up simultaneously at the point p*, and 1/epsilon(2) e(uj,k) (1 - e(ui,epsilon)) -> 4 pi N-i delta(p*) , 1 <= i, j <= 2 , i not equal j as epsilon -> 0, where the location of the point p* defined by (1.12) satisfies the condition (1.13). (C) 2017 Elsevier: Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectSkew-symmetric Chern-Simonsen_US
dc.subjectsystemen_US
dc.subjectBubbling solutionsen_US
dc.subjectNon-degeneracyen_US
dc.titleBubbling solutions for a skew-symmetric Chern-Simons system in a torusen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jfa.2017.04.018en_US
dc.identifier.journalJOURNAL OF FUNCTIONAL ANALYSISen_US
dc.citation.volume273en_US
dc.citation.spage1354en_US
dc.citation.epage1396en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000405136100002en_US
Appears in Collections:Articles