完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lin, Kawuu W. | en_US |
dc.contributor.author | Chung, Sheng-Hao | en_US |
dc.contributor.author | Hsiao, Chun-Yuan | en_US |
dc.contributor.author | Lin, Chun-Cheng | en_US |
dc.contributor.author | Chen, Pei-Ling | en_US |
dc.date.accessioned | 2018-08-21T05:54:20Z | - |
dc.date.available | 2018-08-21T05:54:20Z | - |
dc.date.issued | 2016-11-01 | en_US |
dc.identifier.issn | 1607-9264 | en_US |
dc.identifier.uri | http://dx.doi.org/10.6138/JIT.2016.17.6.20150603c | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/145817 | - |
dc.description.abstract | In distributed computing environments, frequent pattern mining by a multi-computing node can greatly improve mining efficiency. However, the drawback of memory limitations may cause interruption in the kernel and computing nodes when recursively building a frequent pattern (FP) tree or an FP-growth algorithm. In this paper, we propose disk-based FP-tree generation and node-based clustering mechanisms to solve the insufficient memory problem. Results from empirical evaluations show that the proposed method delivers excellent scalability. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Data mining | en_US |
dc.subject | Frequent pattern mining | en_US |
dc.subject | Clustering | en_US |
dc.subject | Distributed computing | en_US |
dc.title | A Disk-Based Mining Algorithm for Frequent Pattern Discovery from Big Data in Distributed Computing Environments | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.6138/JIT.2016.17.6.20150603c | en_US |
dc.identifier.journal | JOURNAL OF INTERNET TECHNOLOGY | en_US |
dc.citation.volume | 17 | en_US |
dc.citation.spage | 1259 | en_US |
dc.citation.epage | 1268 | en_US |
dc.contributor.department | 工業工程與管理學系 | zh_TW |
dc.contributor.department | Department of Industrial Engineering and Management | en_US |
dc.identifier.wosnumber | WOS:000389625000021 | en_US |
顯示於類別: | 期刊論文 |