Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Shih-Hungen_US
dc.contributor.authorChen, Yon-Pingen_US
dc.date.accessioned2014-12-08T15:20:29Z-
dc.date.available2014-12-08T15:20:29Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4244-7317-5en_US
dc.identifier.issn1098-7584en_US
dc.identifier.urihttp://hdl.handle.net/11536/14582-
dc.description.abstractThis paper introduces a symbiotic neuron evolution algorithm (SNEA) to determine the topology of a neural-network-aided grey model (NNAGM) for time series prediction problem. The SNEA uses an evolutionary approach to evolve partially connected neural networks (NNs) and determine the number of hidden neurons. To achieve symbiotic evolution, SNEA first establishes a neuron population where each neuron is randomly created, and evaluates the neurons by constructing NNs with different numbers of neurons. Each neuron shares fitness from participating NNs. This algorithm then performs evolution on the neuron population by crossover and mutation based on neuron fitness. An NNAGM designed by SNEA is applied to the prediction problems and compared with other methods. The experimental results show that SNEA can produce an NNAGM with appropriate topology and higher prediction performance than other methods.en_US
dc.language.isoen_USen_US
dc.subjectgrey modelen_US
dc.subjectsymbiotic evolutionen_US
dc.subjectneural networken_US
dc.subjectpredictionen_US
dc.titleSymbiotic Neuron Evolution of a Neural-Network-Aided Grey Model for Time Series Predictionen_US
dc.typeProceedings Paperen_US
dc.identifier.journalIEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011)en_US
dc.citation.spage195en_US
dc.citation.epage201en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000295224300025-
Appears in Collections:Conferences Paper